

Mark Z. Jacobson
Stanford University

MiningWatch 2019
Ottawa, Canada
November 14, 2019

Wind, Water, Solar (WWS) Solution

Electrify or Provide Direct Heat For All Sectors and Provide the Electricity and Heat with 100% WWS

ELECTRICITY	TRANSPORTATION	HEATING/COOLING	INDUSTRY
Wind	Battery-electric	Electric heat pumps	Electric arc furnace
Solar PV/CS	PH ₂ fuel cell	Solar heat	Induction furnaces
Geothermal		Geothermal heat	Resistance heaters
Hydro		District heat/cold	Dielectric heaters
Tidal/Wave			Electron beam heat

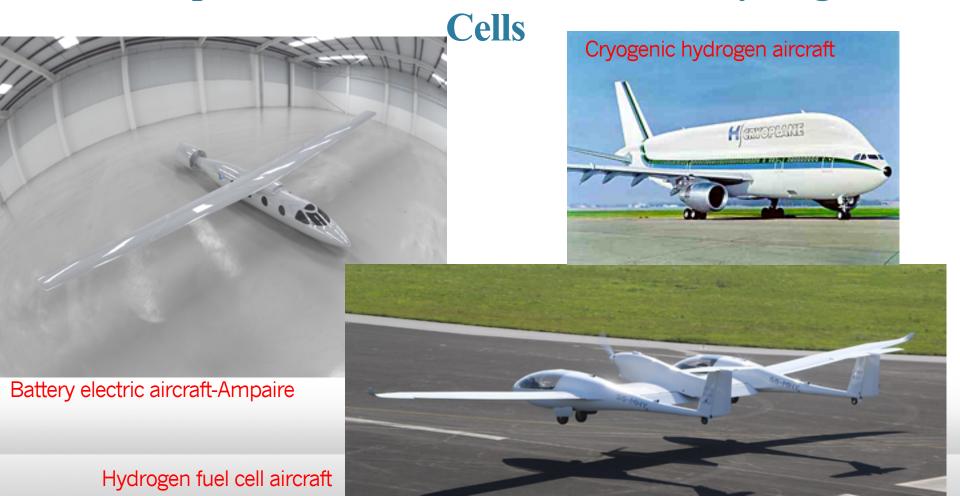
Onshore and Floating Offshore Wind

Solar Photovoltaics (PV)

Electric & Hydrogen Fuel Cell Transportation

Tesla Semi-electric (850km)

Fiellstrand electric ferry



Nikola Tre Semi-hydrogen fuel cell (1250 km)

Protera electric bus

Planes: Replace Jet Fuel With Batteries & Hydrogen Fuel

Electric Appliances

Electric lift

Electric lawn mower

Electric leaf blower

Types of Storage for a 100% WWS System

ELECTRICITY	HEATING/COOLING	OTHER
CSP with storage	Water tank	Hydrogen
Pumped hydro storage	Ice	
Existing hydroelectric	Underground	
Batteries	Borehole	
Flywheels	Water Pit	
Compressed air	Aquifer	
Gravitational Storage	Building materials	

Concentrating Solar Power

Top: Gemasolar CSP plant. 19.9 MW with 15 hours of storage.

Bottom: 392 MW Ivanpah CSP

Stationary Battery Storage

Gravitational Storage With Solid Masses

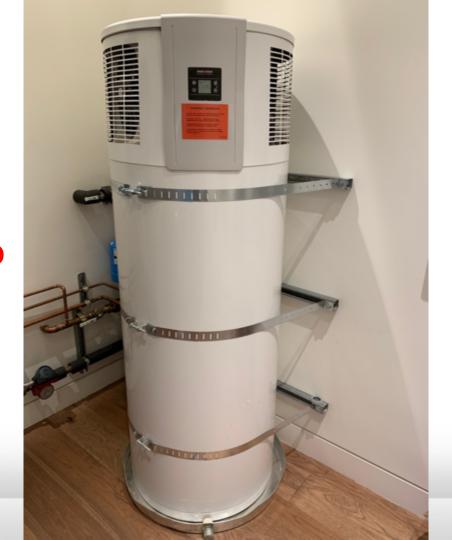
Stanford University 4th Generation District Heating System

Seasonal Heat Storage in Underground Boreholes Okotoks, Canada

Seasonal District Heat Storage in Covered Water Pit Vojens, Denmark

Nighttime Storage in Ice for Daytime Air Cooling

Transitioning an Individual Home to Run on WWS Electricity/Storage and No Gas



Ductless Mini-Split Electric Heat Pump Air Heater / Air Conditioner

Electric Heat Pump Water Heater

Electric Induction Cooktop

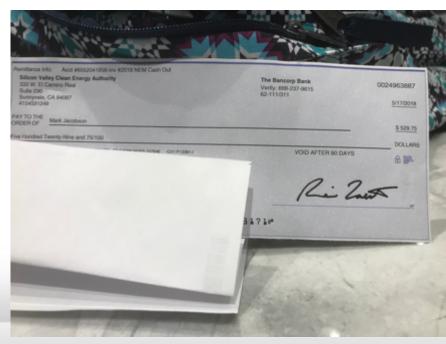
One Year of Energy Use

Generated 120% of all home and vehicle energy → No electric bill, natural gas bill, or gasoline bill

Received \$530 from CCA for excess electricity to grid

Avoided costs of all-electric home

Gas hookup fee: 3-8 K

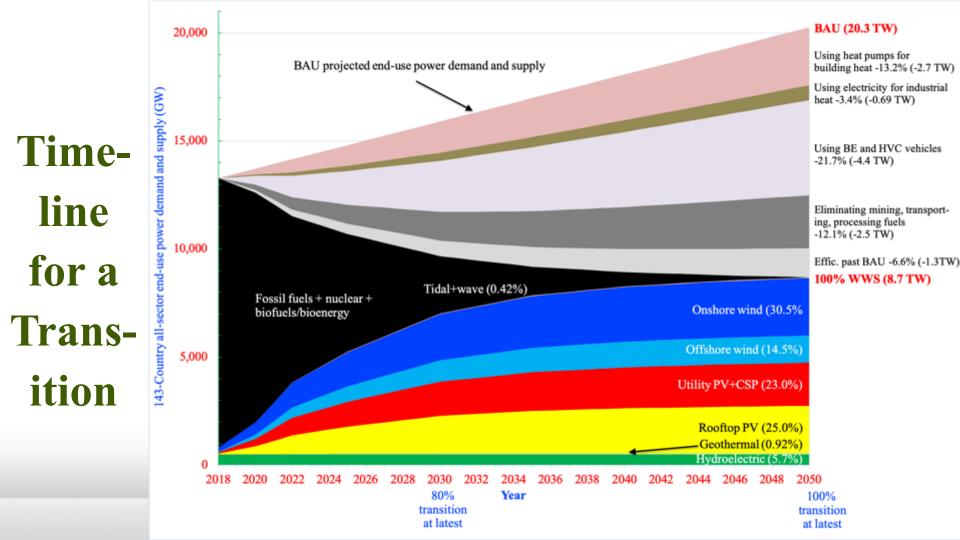

Gas pipes: 1-7 K

Electric bill 1-3 K per year

Natural gas bill 1-3 K per year

Vehicle fuel bill 1-4 K per year

Total: 4-15 K plus 3-10 K per year



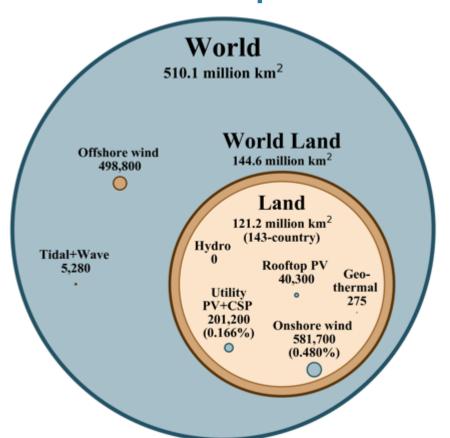
Can the World Transition to 100%, Clean, Renewable Energy for all Purposes?

Roadmaps for 143 Countries

All-Purpose End-Use Power Demand

Year and Fuel Type	143- Countries
2016 End-use demand	12.6 TW
2050 Demand with current fuels (BAU)	20.3 TW
2050 Demand with WWS	8.7 TW
2050 Demand reduction w/ WWS	57.1%
21.7% efficiency of BE, HFC v. ICE	
3.4% efficiency of electric industry	
13.2% efficiency of heat pumps	
12.1% eliminating fuel mining	
6.6% efficiency beyond BAU	

Percent of 2050 143-Country End-Use Demand Supplied by WWS Devices and Number of New Devices

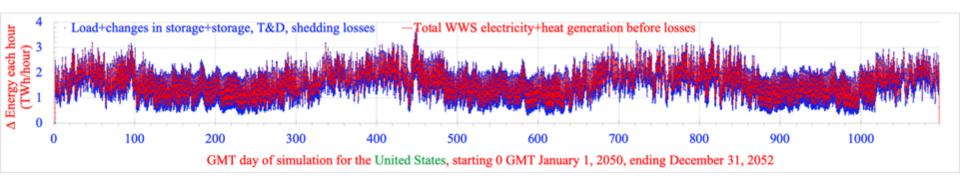

0.75-MW wave devices

	PCT SUPPLY 2050
TECHNOLOGY	World
5-MW onshore wind turbines	30.5%
5-MW offshore wind turbines	14.5
5-kW Res. roof PV systems	11.1
100-kW com/gov roof PV systems	13.8
50-MW Solar PV plants	19.0
100-MW CSP plants	3.93
100-MW geothermal plants	0.92
1300-MW hydro plants	5.72
1-MW tidal turbines	0.08

0.34

100%

Area Beyond 2018 Installations to Power 143 Countries for all Purposes With 100% WWS in 2050


Percent of 143-Country Land

Onshore wind: 0.48%

Utility PV+CSP: 0.17%

Total 0.65%

Matching U.S. All-Sector Demand Every 30 Sec. With 100% WWS+Storage for 3 Years (2050-2052) and 100 Days

Red = Energy supply

Blue = Energy demand + change in storage + losses + shedding

Energy Cost for 143 Countries in 24 Regions Resulting in a Stable Grid Upon Electrification of all Energy With 100% WWS+Storage

World: 9.0 cents/kWh Capital Cost: \$73 trillion

U.S.: 9.3 cents/kWh Capital cost: \$7.8 trillion

China: 8.3 cents/kWh
Capital cost: \$16.6 trillion

Europe: 8.2 cents/kWh Capital cost: \$6.2 trillion

2050 World BAU vs WWS Cost

DAO fuci chergy cost	\$17.7 ummon/yr
BAU fuel health cost	\$30.0 trillion/yr
BAU fuel climate cost	\$28.4 trillion/yr
Total conventional fuel electricity sector cost	\$76.1 trillion/yr

WWS replacing all BAU energy sectors

DAII final anarow cost

\$6.8 tril/yr

\$17.7 trillion/xm

WWS reduces energy cost 61.4% and economic (social) cost 91%

61 Countries Committed to 100% Renewable Electricity				
Afghanistan	Denmark	Kirbati	Papua N.G.	Tanzania
Aruba	Djibouti	Lebanon	Philippines	Timor-Les
Bangladesh	D ominica	Madagas	Portugal	Tokelau
Barbados	Dom Rep.	Malawi	Rwanda	Tunisia
Bhutan	Ethiopia	Maldives	Samoa	Tuvalu
Burkina Faso	Fiji	Marsh Is.	Senegal	Scotland
Cabo Verde	Gambia	Mongolia	Solom Is.	Vanuatu
Cambodia	Ghana	Morocco	S. Sudan	Vietnam
Colombia	Grenada	Nepal	Spain	Yemen
Comoros	Guatemala	Niger	Sri Lanka	
Congo, DR	Haiti	Niue	St. Lucia	
Cook Islands	Honduras	Palau	Sudan	
Costa Rica	Kenya	Palestine	Sweden	

10 Countries near or above 100% Renewable Electricity

Iceland

Norway

Costa Rica

Paraguay

Uruguay

Tajikistan

Bhutan

Albania

Kenya

Scotland

U.S. House H.Res.540 (2015), Senate S.Res.632 (2016) U.S. transition to "100% clean renewable energy by 2050"

U.S. Senate Bill S.987 (2017) and House Bill H.R. 3314 (2017) "100% clean and renewable energy by 2050"

U.S. House Bills H.R. 3671 (2017), H.R. 330 (2019) "100% clean, renewable energy by 2035" "100% renewable electricity by 2035"

U.S. Green New Deal (H.Res. 109; S.Res. 59) 100% Renewable Energy for the U.S. by 2030

Laws Arising From 100% WWS Roadmaps

100% renewable electricity by 2032 Washington D.C.

100% renewable electricity by 2045 Hawaii, California, New Mexico, Washington State, New York

100% renewable electricity by 2050

Puerto Rico, Nevada, Maine, Wisconsin, Virginia

Some of 140 Cities/Counties Committed to 100% Renewables

Atlanta (GA)	Salt Lake City (UT)	Sylva (NC)
Chicago (IL)	San Diego (CA)	Moab (UT)
Cincinatti (OH)	San Francisco (CA)	Boulder (CO)
Cleveland (OH)	San Jose (CA)	Burlington (VT)
Denver (CO)	Spokane (WA)	Rochester (MN)
Kansas City (MO)	St. Louis (MO)	Fayetteville (AR)
Los Angeles (CA)	St. Paul (MN)	Palo Alto (CA)
Madison (WI)	St. Petersburg (FL)	Middleton (WI)
Minneapolis (MN)	Tallahassee (FL)	Missoula (MT)
Orlando (FL)	Abita Springs (LA)	Questa (NM)
Philadelphia (PA)	Sarasota (FL)	Fayetteville (AR)
Portland (OR)	Hanover (NH)	Clarkston (GA)

Some of the 210 Companies Committed to 100% Renewables

IKEA	Adobe	JPMor/Chas	Coca Cola
Google	H&M	HP	Goldman-Sachs
Microsoft	Nestle	Nike	Johnson & Johnson
Apple	S&P	Starbucks	Walmart
Workday	T-Mobile	AB InBev	Bank of America
Bloomberg	BMW Group	Burberry	Citi
P&G	Ebay	Facebook	Estee Lauder
GM	Goldman-Sachs	HSBC	Infosys
Kellogg's	Lego	Mars	Morgan Stanley
Salesforce	Dell	Amazon	Wells Fargo

Some of the 100+ NGOs Committed to 100%

The Solutions Project Environment America

100.Org Toxics Action Center

Sierra Club Renewable Cities

350.Org National People's Action

Greenpeace Institute for Self-Reliance

theRE100.org Hip Hop Caucus

go100percent.org Environmental Action

renewables100.org Renewable Energy Long Island

Climate Reality Emerald Cities Collaborative

iclei.org Community Power

The Center for Working Families Center for Community Change

Miami Climate Alliance Asian Pacific Environmental Network

Summary – Transitioning to 100% WWS

Creates 28 million more jobs than are lost worldwide

Requires only 0.17% of land for footprint; 0.48% for spacing

Avoids ~7 mil. air pollution deaths per year

Slows then reverses global warming

Grids can stay stable throughout the world with 100%

WWS absolute energy costs are 60% less than of fossils

WWS absolute energy+health+climate costs 90% less than of fossils

```
Twitter
    @mzjacobson
Infographic maps
    https://thesolutionsproject.org/why-clean-energy/
Roadmaps
    web.stanford.edu/group/efmh/jacobson/Articles/I/WWS-
    50-USState-plans.html
Grid Studies
    www.stanford.edu/group/efmh/jacobson/Articles/I/Combi
    ningRenew/combining.html
Texbook on 100% WWS
    https://web.stanford.edu/group/efmh/jacobson/WWSBoo
    k/WWSBook.html
```